Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping

Series Editor

Dr. Nikolas Xiros School of Naval Architecture and Marine Engineering University of New Orleans 2000 Lakeshore Dr. Ste 914 New Orleans, LA 70124 USA E-mail: nxiros@uno.edu Chrystel Gelin

A High-Rate Virtual Instrument of Marine Vehicle Motions for Underwater Navigation and Ocean Remote Sensing

Author Chrystel Gelin San Diego, CA USA

ISSN 2194-8445 e-ISSN 2194-8453 ISBN 978-3-642-32014-9 e-ISBN 978-3-642-32015-6 DOI 10.1007/978-3-642-32015-6 Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012943050

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dedication

This work was conducted on the basis of the author's thesis within Florida Atlantic University's Ocean Engineering Graduate Program requirements with the advice of Dr. N. Xiros and advisory committee members Drs. M. Dhanak, F. Driscoll, P. Beaujean and J. VanZwieten.

This book is dedicated to my family, friends and colleagues who have supported me through the years and kept on believing in the work I did and its happy ending.

I'm dedicating it particularly to my dear husband, Gregory, who has put up with these many years of me working long hours, my teeth grinding preventing him from sleeping and the overall stress on our household during that journey.

I also dedicate this work to my tiger team, my grandmother, Lea, my mother, Chantal, my father, Jacques, my little brother, Cyril and my best friend Anne. Finally I look forward for my son, James, to be of age to share that work and experience with him and why not inspire a scientific path...

Thank you. Stubbornness does pay sometimes ...

Contents

Li	ist of	f Figures	XI
Li	ist of	f Tables	XVII
1	Inti	roduction	1
	1.1	Autonomous Surface Vessels for Hydrographic Data Acquis	ition1
	1.2	Gateway USVs	2
	1.3	Proposed System	4
	1.4	Problem Statement	4
	1.5	Contributions	5
		1.5.1 Book Outline	6
2	Inst	trumentation and Data Acquisition System	7
	2.1	The Sensors	7
		2.1.1 Acoustic Doppler Current Profiler (ADCP)	7
		2.1.2 Inertial Measurement Unit IMU	10
		2.1.3 Compass TCM2	11
		2.1.4 Tilt Sensor	12
		2.1.5 Global Positioning System GPS	13
	2.2	Data Acquisition System	13
		2.2.1 Host Computer	14
		2.2.2 Target Computer	14
		2.2.3 USV Hardware Layout	15
		2.2.4 Computer Networking	16
		2.2.5 Software Overview	17
3	Dat	ta Processing	19
	3.1	Reference Frames	19
		3.1.1 Earth-Centered Reference Frames	20
		3.1.2 North East Down Reference Frame	21
		3.1.3 Body Fixed Reference Frame	21
		3.1.4 Vessel States	22
	3.2	Coordinate Transformation	23
		3.2.1 Transformation from Geodetic to ECEF and from EC	EF
		to NED	23

		3.2.2	Transformations from Component Reference Systems	
			to Body Fixed Reference System	24
		3.2.3	Transformations from Body Fixed Frame to NED	25
	3.3	Data l	Fusion	25
		3.3.1	Data Fusion Overview	26
		3.3.2	Estimation of the Euler Angles	27
			3.3.2.1 Estimation of the Ship's Velocity and Position	33
	3.4	ADCI	P Processing	34
4	Mo	tion O	bservation and Experimental Results	37
	4.1	Vertic	cal Motion	37
		4.1.1	Study of the Acceleration	37
		4.1.2	Velocity Calculations	42
			4.1.2.1 Vertical Velocity Resulting from Integrating	
			Acceleration and Removing the Induced Trend	42
			4.1.2.2 Vertical Velocity Resulting from High-Pass Filtering	
			the Integrated Acceleration	43
			4.1.2.3 Vertical Velocity Using the Data Fusion Technique	44
		4.1.3	Vertical Position Calculations	45
			4.1.3.1 Vertical Position Calculated Using the High Pass	
			Filtered Integrated Velocity	46
			4.1.3.2 Vertical Position Calculated Using the Data Fusion	
			Technique	46
	42	Data	Acquisition System Lab Testing	47
		4.2.1	Step 1: Processing of Individual Measurements.	
		422	Step 2: Validate the Choice for the Data Fusion Frequency	
		423	Step 2: Low-Pass Filtering of the Merged and DGPS Data	
		1.2.3	at the Data Fusion Frequency and Conclusion on Their	
			A greement Using the Crosscorrelation Method	50
		424	Stan 4. High Dags Eiltoning of the Margad Signals	
		4.2.4	Step 4: High-Pass Filtering of the Merged Signals	60
			to Conclude on the Signals Standard Deviation	00
5	۸t_9	Son Fr	mariment of Data Acquisition System	61
5	5 1	Motio	on Data Acquisition Measurements and Navigational	
	5.1	Data 1	Fusion Results	62
	5 2		Durafaranced and Corrected Massurements	02 64
	5.2	5 2 1	Correction of the ADCP Date in the Ream Coordinate Frame	04 65
		3.2.1	5.2.1.1 Water Current Macauned for the Einst Management	05
			5.2.1.1 Water Current Measured for the First Maneuver,	65
			L-Shape Track Heading South Then East	65
			5.2.1.2 Water Current Measured for the Second Maneuver,	
			Linear Track Heading South Then North	73
		5.2.2	Correction of the ADCP Data in the North-East-Up Frame,	
			the ADCP's Earth Reference Frame	77
			5.2.2.1 Water Current Measured, at the First Bin,	
			in the NEU Frame for the L-Shape Track and	
			the Linear Track	78

Contents

	5.2.2.2	Water Current Measured Observing the ADCP	
		Velocity Profiles in the NEU Frame for the L-Shape	
		Track and the Linear Track	79
	5.3 Conclusion on	the At-Sea Mission	84
6	Conclusion		85
R	eferences		93
A	ppendix A – Native	Output of the Instruments	95

List of Figures

Fig.	1 Autonomous Surface Craft ACES	2
Fig.	2 Autonomous Surface Craft DELFIM, part of the ASIMOV project,	
0	designed, and built by the Institute for System and Robotics, beginning	
	in 1998	3
Fig.	3 Diagrammatic representation of the FAU Autonomous Surface Vessel	4
Fig.	4 Picture of an RDI Acoustic Doppler Current Profiler	8
Fig.	5 Diagram of transmission principle of an Acoustic Doppler Current	
0	Profiler, mounted onboard a ship, showing the 4 directions of the	
	4 beams	8
Fig.	6 ADCP Beam orientation with beam 3 at 45 degrees with respect	
0	to the heading, looking from underneath the boat.	9
Fig.	7 ADCP velocity standard deviation in function of the size of the bins	
	and number of pings per ensemble chosen on the mission command set	.10
Fig.	8 BEI Inertial Measurement Unit Motion Pack II.	.11
Fig.	9 TCM2-20 biaxial inclinometer and a triaxial magnetometer compass	
	module	.11
Fig.	. 10 Fredericks Company ± 60 degree Angle Range tilt sensor	.12
Fig.	11 Diagrammatic representation of the 24 satellites of the Global	
-	Positioning System	.13
Fig.	. 12 Picture of the GARMIN Global Positioning System 76 receiver	.13
Fig.	13 Overview of the data acquisition system, including the sensors,	
	computers and links	.14
Fig.	. 14 Picture of the acquisition setup	.15
Fig.	15 Block diagram of the acquisition hardware, including the sensors,	
	computers and links	.16
Fig.	16 Belkin 802.11g Wireless Cable/DSL Gateway Router and the	
	802.11g Wireless Notebook Network Card	.16
Fig.	17 Block diagram of the links between the host PC, the target PC104	
	stack, the sensors, and Operating Systems of the entities	.17
Fig.	18 Representation of the axis of the Earth Centered Earth Fixed and	
	Earth Centered Inertial Frames	.20
Fig.	. 19 Schematic representation of the North East Down reference frame	.21
Fig.	20 Ship-fixed coordinate reference frame (red) and 6 degrees of Freedom	
	motion variables for a marine vessel (sway, surge, heave, pitch, roll	
	and yaw) (Fossen 1994)	.22

Fig.	21 Diagram of the sensors output variables and the coordinate	
	transformations	.23
Fig.	22 Representation of the Ellipsoid parameters	.24
Fig.	23 Acceleration measurements in function of the rotation angles	.28
Fig.	24 Comparison between the low frequency estimates of Euler angle $\phi L(a)$	
	$(\theta L(b))$ obtained from the IMU (blue) and from the Tilt sensor (red)	.29
Fig.	25 Diagram of the data fusion IMU / TCM2/ Tilt sensor to obtain	
	Euler angles, β	.30
Fig.	26 Comparison between the Euler angles ϕL (a), θL (b) from	
	accelerometers, blue and ϕ (a), θ (b) from data fusion, red and	
	between the compass heading, blue and Euler angle ψ from data fusion	
	in red (c). The black is the difference of blue and red signals	.31
Fig.	27 During the third part of the test, high frequency set of motion,	
	comparison between the high frequency component of the integral	
	of Euler rate ϕ (a), θ (b), ψ (c) in blue, and the high frequency	
	component of the merged Euler angle ϕ (a), θ (b) and ψ (c) in red.	
	The black is the difference of the two signals in each plot	.32
Fig.	28 In red, PSD of Merged Euler angle ϕ (a), θ (b) and ψ (c); in blue,	
	PSD of Euler angle from tilt sensor ϕL (a), θL (b), and ψL (c); in black,	
	PSD of integrated Euler rate ϕ (a), θ (b), and ψ (c)	.33
Fig.	29 Diagrammatic representation of the data fusion of the IMU data	
T .	and the GPS data used to obtain the ships velocity V	.33
Fig.	30 ADCP beam and reference frame	.35
Fig.	31 Vertical motion experiment setup.	.37
Fig.	32 Vertical motion experiment: raw vertical acceleration A_z	.38
Fig.	33 A_z spectrum from top to bottom for the set 1 (a), 3 (c) and 5 (e)	
	of periods about 5, 15 and 25 s (left side) and filtering effect on the size 1 (is be side) for the set 1 (b) 2 (d) and 5 (f)	20
Fia	34 Magging and filtered appaleration for pariods shout 5 (a) 15 (b)	. 39
rig.	and 25s (a). A acaleration measurements are in block while filtered	
	and 25s (c). Acceleration measurements are in black while intered	40
Fig	35 A PSD for the set 1, 2 and 3 (b) of periods about 5, 10 and 15 s	.40
rıg.	and for the set 4, 5 and 6 (a) of periods about 20, 25, and 35 s	40
Fio	36 Close up of the acceleration for the set 1 (a) 3 (b) and 5 (c) of periods	.+0
1 15.	about 5, 15 and 25s with the expected motion in red, the system	
	acceleration in blue and the difference between the signals in black	41
Fig.	37 Difference, in black, between the expected velocity V_{7} , red.	
8'	and the obtained velocity using the <i>detrend</i> function on the integrated	
	acceleration in blue for the set 1 (a). 3 (b) and 5 (c).	.43
Fig.	38 For the sets 1 (a), 3 (b) and 5 (c), velocity obtained using	
	a high-pass filter on the integrated acceleration. in blue. plotted	
	against the expected velocity V_7 , in red. The difference between	
	the two signals is in black	.44

Fig.	39	For the sets 1 (a), 3 (b) and 5 (c), velocity obtained by data fusion, in blue plotted against the expected velocity V_{z} in red. The difference	
		hetween the two signals is in black	45
Fig.	40	For the sets 1 (a), 3 (b) and 5 (c), position obtained using a high pass filter on the integrated velocity, in blue, plotted against the expected position Z in rad. The difference between the two signals is in black	15
Fig.	41	For the sets 1 (a), 3 (b) and 5 (c), position obtained by data fusion, in blue, plotted against the expected position Z, in red. The difference	40
		between the two signals is in black.	47
Fig.	42	IMU, tilt sensor, and TCM2 compass attached to a rigid plate attached to the cart.	47
Fig.	43	Methodology used to find the data fusion frequency between IMU and GPS measurement to recover full frequency estimate of the system's position and velocity.	49
Fig.	44	Square path, as perceived by the DGPS.	49
Fig.	45	Square path proceeding in a zigzag pattern between corners,	50
Fig	16	Circle path as perceived by the DCPS	50 51
Fig.	40	Poll and Pitch of the cart measured by the tilt sensor during the first	51
гıg.	4/	trajectory ((a) and (b)), the second trajectory ((c) and (d)) and the third $(a, b) = (a, b)$	
D !-	40	trajectory ((e) and (f)).	52
Fig.	48	PSD of the north component, in blue, and the east component, in red,	
		of the IMU acceleration during square trajectory (a), square path	57
D !-	40	by processing in zigzag course (b) and the circle trajectory (c).	53
Fig.	49	Influence of frequencies above 2Hz on the IMU acceleration	
		acquisition system	54
Fiσ	50	PSD of the DGPS position (a) DGPS velocity (b) and IMU acceleration	5-
rig.	50	(c) for the first trajectory of the on shore test following a square path	
		The blue signal corresponds to the north component of the measurement	
		and the red signal to the east component	55
Fio	51	Data fusion diagram between the IMI acceleration data and	55
1 16.	51	the DGPS velocity measurements in order to obtain the enhanced	
		velocity estimate	56
Fig	52	PSD at particular steps of the data fusion process between	50
1 15	-	the DGPS north component velocity and the IMU north component	
		acceleration	57
Fiσ	53	Comparison in the time domain between the merged velocity (red)	51
1 16.	55	and the velocity obtained by direct integration of the raw IMU	
		acceleration signal (black). The blue signal is the DGPS velocity	
		measurement. The unner namel shows the north component of the	
		signal (a) and the lower, the east component (b)	58
		signal (a) and the former, the cust component (b)	-0

Fig. 5	Data fusion diagram between the DGPS position measurement and the
	merged velocity estimate obtained by fusing the IMU acceleration data
	and the DGPS velocity
Fig. 5	Crosscorrelation (a) (respectively (b)) between the north, (respectively
	east) component of the DGPS velocity and the north (respectively east)
	component of the merged velocity estimates. Similarly, (c) (respectively
	(d)) corresponds to the crosscorrelation between the north (respectively
	east) component of the DGPS position and the north (respectively east)
	component of the merged position estimates60
Fig. 5	The Florida Current
Fig. :	Trajectory perceived by the DGPS during the first (a) and second (b)
	maneuver at sea
Fig. :	Close ups around the data fusion frequency, 0.05Hz, of the PSD of the
	velocity measurement from the DGPS (blue), the acceleration estimate
	from the IMU (black) and the enhanced estimate of the velocity obtained
	by data fusion (red)63
Fig. :	Time series of the vessel's enhance velocity measurement obtained
	by data fusion with its north (east, down) component in blue (red, black)
	for the first maneuver (a, b, c) and second maneuver (d, e, f)63
Fig. (Diagram of the necessary reference frame transformations to transform
	the vessel's enhanced velocity measured by the data acquisition system
	into the ADCP Beam coordinate frame65
Fig. (Ship velocity, in blue, along beam 2 (a), and 3 (d) compare to the
	contaminated measurement of the water current, in black, along beam
	2 (b) and 3 (e), and to the true water current, in red, along beam 2 (c)
	and 3 (f) during the first maneuver while the beams 2 and 3 are looking
	forward
Fig. (Ship velocity, in blue, along beam 1 (a), and 4 (d) compare to the
	contaminated measure of the water current, in black, along beam 1 (b)
	and 4 (e), and to the true water current, in red, along beam 1 (c) and 4 (f) (1)
Fig	Lucermented ADCD value it method along hear 2 locking all
rig. (during the first menouver going south then east
Fig	Corrected ADCD valagity profile along been 2 looking forward
rig. (during the first management going south then east
Fig (Uncorrected ADCP velocity profile along beam 3 looking forward
rig. v	during the first maneuver going south then east 60
Fig (Corrected ADCP velocity profile along beam 3 looking forward
rig. v	during the first maneuver going south then east 70
Fig. 4	Uncorrected ADCP velocity profile along beam 1 looking aft
- 18.	during the first maneuver going south then east 70
Fig. (Corrected ADCP velocity profile along beam 1. looking aft.
8• `	during the first maneuver going south then east

 during the first maneuver going south then east
 Fig. 70 Corrected ADCP velocity profile along beam 4, looking aft, during the first maneuver going south then east
 during the first maneuver going south then east
 Fig. 71 Ship velocity, in blue, along beam 2 (a), and 3 (d) compare to the contaminated measure of the water current, in black, along beam 2 (b) and 3 (e), and to the true water current, in red, along beam 2 (c) and 34 (f) during the second maneuver while the beams 2 and 3 are looking forward
 contaminated measure of the water current, in black, along beam 2 (b) and 3 (e), and to the true water current, in red, along beam 2 (c) and 34 (f) during the second maneuver while the beams 2 and 3 are looking forward
 and 3 (e), and to the true water current, in red, along beam 2 (c) and 34 (f) during the second maneuver while the beams 2 and 3 are looking forward
 34 (f) during the second maneuver while the beams 2 and 3 are looking forward
 forward
 Fig. 72 Ship velocity, in blue, along beam 1 (a), and 4 (d) compare to the contaminated measure of the water current, in black, along beam 1 (b) and 4 (e), and to the true water current, in red, along beam 1 (c) and 4 (f) during the second maneuver while the beams 1 and 4 are looking aft75 Fig. 73 Diagram of the necessary reference frame transformations to transform the ADCP data into the North-East-Up coordinate frame where the enhanced velocity measurement of the vessel is available
 contaminated measure of the water current, in black, along beam 1 (b) and 4 (e), and to the true water current, in red, along beam 1 (c) and 4 (f) during the second maneuver while the beams 1 and 4 are looking aft75 Fig. 73 Diagram of the necessary reference frame transformations to transform the ADCP data into the North-East-Up coordinate frame where the enhanced velocity measurement of the vessel is available
 and 4 (e), and to the true water current, in red, along beam 1 (c) and 4 (f) during the second maneuver while the beams 1 and 4 are looking aft75 Fig. 73 Diagram of the necessary reference frame transformations to transform the ADCP data into the North-East-Up coordinate frame where the enhanced velocity measurement of the vessel is available
 during the second maneuver while the beams 1 and 4 are looking aft75 Fig. 73 Diagram of the necessary reference frame transformations to transform the ADCP data into the North-East-Up coordinate frame where the enhanced velocity measurement of the vessel is available
 Fig. 73 Diagram of the necessary reference frame transformations to transform the ADCP data into the North-East-Up coordinate frame where the enhanced velocity measurement of the vessel is available
 the ADCP data into the North-East-Up coordinate frame where the enhanced velocity measurement of the vessel is available
 the enhanced velocity measurement of the vessel is available
 Fig. 74 Time series of the north component of the ship (blue), of the contaminated water current measured by the ADCP in the middle of the first bin (black) and of the water current resulting from its correction (red) in the NEU during the first (a, b an c) and the second maneuver (d, e, and f)
 contaminated water current measured by the ADCP in the middle of the first bin (black) and of the water current resulting from its correction (red) in the NEU during the first (a, b an c) and the second maneuver (d, e, and f)
 of the first bin (black) and of the water current resulting from its correction (red) in the NEU during the first (a, b an c) and the second maneuver (d, e, and f)
 correction (red) in the NEU during the first (a, b an c) and the second maneuver (d, e, and f)
 maneuver (d, e, and f)
 Fig. 75 Time series of the east component of the ship (blue), of the contaminated water current measured by the ADCP in the middle of the first bin (black) and of the water current resulting from its correction (red) during the first (a, b an c) and the second maneuver (d, e, and f)
 water current measured by the ADCP in the middle of the first bin (black) and of the water current resulting from its correction (red) during the first (a, b an c) and the second maneuver (d, e, and f)
 and of the water current resulting from its correction (red) during the first (a, b an c) and the second maneuver (d, e, and f)
 (a, b an c) and the second maneuver (d, e, and f)
 Fig. 76 Uncorrected north component of the ADCP velocity profile during the first maneuver of the mission at sea, creating an L-shape track going south then east. Fig. 77 Corrected north component of the ADCP velocity profile during the first maneuver of the mission at sea, creating an L-shape track going south then east
 Fig. 77 Corrected north component of the MDCP velocity profile during the first maneuver of the mission at sea, creating an L-shape track going south then east 80
Fig. 77 Corrected north component of the ADCP velocity profile during the first maneuver of the mission at sea, creating an L-shape track going south then east
the first maneuver of the mission at sea, creating an L-shape track going south then east
going south then east 80
90109 NOUTH THEILEAN OU
Fig. 78 Uncorrected east component of the ADCP valocity profile during
the first maneuver of the mission at sea, creating an L-shape track
going south then east 81
Fig 79 Corrected east component of the ADCP velocity profile during the first
maneuver of the mission at sea, creating an L-shape track going south
then east
Fig. 80 Uncorrected north component of the ADCP velocity profile during
the second maneuver of the mission at sea, following a straight line
track going south then north
Fig. 81 Corrected north component of the ADCP velocity profile during the
Fig. 81 Corrected north component of the ADCP velocity profile during the second maneuver of the mission at sea, following a straight line track

33
33
36
38
38
)1
3

List of Tables

Table 1	Specifications of the 300 KHz ADCP RDI Workhorse Sentinel	9
Table 2	Specifications of the BEI Inertial Measurement Unit MotionPakII1	1
Table 3	Specifications of the TCM2 biaxial inclinometer and a triaxial	
	magnetometer compass module1	2
Table 4	Specifications of the Fredericks Company \pm 60 Degree Angle Range	
	tilt sensor	2
Table 5	Specifications of the GARMIN Global Positioning System	
	76 receiver	3
Table 6	Mean and standard deviation of the tilt sensors' roll and pitch	
	as well as the influence it could have on the IMU acceleration if not	
	considered for the three trajectories of the on shore test of the data	
	acquisition system	2
Table 7	Results from the peaks of frequency detection corresponding	
	to the cart's motion for the three trajectories	6
Table 8	Estimates of the standard deviation of the merged velocity signal	
	for the three trajectories of the on shore data acquisition test	0
Table 9	Ship's enhanced velocity measurement, uncorrected and corrected	
	ADCP water current measurement in beam coordinates, at the first bin,	
	during the first maneuver	7
Table 1	0 Estimates of uncorrected and corrected ADCP water current	
	measurement looking at the velocity profiles in beam coordinates	
	during the first maneuver7	3
Table 1	1 Ship's velocity, uncorrected and corrected ADCP water current	
	measurement in beam coordinates, for the first bin, during the second	
	maneuver	5
Table 1	2 Estimation of uncorrected and corrected ADCP water current	
	measurement looking at the velocity profiles in beam coordinates	
	during the second maneuver	6
Table 1	3 Ship's velocity, uncorrected and corrected ADCP water current	
	measurement in North-East-Up coordinates, for the first bin,	
	during the first and second maneuver	9
Table 1	4 Estimation of uncorrected and corrected ADCP water current	
	measurement looking at the velocity profiles in NEU coordinates	
	during the first and second maneuver	4
Table 1	5 Estimates of the standard deviation of the merged velocity signal	
	for the three trajectories of the on shore data acquisition test	9

Summary of water current estimates obtain by correcting	
the ADCP data during the two maneuvers at sea	.90
Estimated standard deviation of the ADCP velocity during the first	
and second maneuver at sea in correlation to the bin size, using the	
standard deviation of the error velocity	.91
RS232 Registers	.97
PD0 standard output data buffer format	.98
	 Summary of water current estimates obtain by correcting the ADCP data during the two maneuvers at sea. V Estimated standard deviation of the ADCP velocity during the first and second maneuver at sea in correlation to the bin size, using the standard deviation of the error velocity. RS232 Registers. PD0 standard output data buffer format.