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Appendix A - Native Output of the Instruments 

Appe ndix A - Native Out put of the Instrume nts  

1.  GPS 

The native representation of the GPS is of NMEA output format with the 
following NMEA messages available: 

$GPGGA - Global Positioning System Fix Data 

$GPGLL - Geographic Position, Latitude/Longitude 

$GPGSA – GNSS (Global Navigation Satellite System) DOP and Active Satellites 

$GPGST - GNSS Pseudorange Error Statistics 

$GPGSV - GNSS Satellites in View 

$GPRMC - Recommended Minimum Specific GNSS Data 

$GPRRE – Range Residual Message 

$GPVTG – Course over ground and Ground Speed 

$GPZDA - UTC Date / Time and Local Time Zone Offset 

The GPGGA message contains detailed GPS position information, and is the most 
frequently used NMEA message, this message takes the following form: 

$GPGGA,hhmmss.ss,ddmm.mmm,a,dddmm.mmm,b,q,xx,p.p,a.b,M,c.d,M,x.x,nnnn 

hhmmss.ss = UTC of position  

ddmm.mmm = latitude of position 

a = N or S, latitude hemisphere 

dddmm.mmm = longitude of position 

b = E or W, longitude hemisphere  

q = GPS Quality indicator (0=No fix, 1=Non-differential GPS fix, 2=Differential 
GPS fix, 6=Estimated fix)  

xx = number of satellites in use  

p.p = horizontal dilution of precision  

a.b = Antenna altitude above mean-sea-level 

M = units of antenna altitude, meters  
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c.d = Geoidal height 

M = units of geoidal height, meters  

x.x = Age of Differential GPS data (seconds since last valid RTCM transmission)  

nnnn = Differential reference station ID, 0000 to 1023  

 
2.  COMPASS 

The TCM2 standard output format is of NMEA format:  

$C<compass>P<pitch>R<roll> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B   Setup and Acquisition  
of the ADCP 

THE SERIAL BREAK 
The serial break which is used to wake up the ADCP is sent by changing the 6th bit 
(sets break enable) of the Line Control Register (LCR) that controls the data going 
on the Transmit Data (TD) and Receive Data (RD) lines. When active, the TD line 
goes into "Spacing" state which causes a break in the receiving UART. Setting 
this bit to '0' disables the Break. 
 

Table 18 RS232 Registers 

Base 
Address 

DLAB Read/Write Abr. Register Name 

+ 0 

=0 Write - Transmitter Holding Buffer 

=0 Read - Receiver Buffer 

=1 Read/Write - Divisor Latch Low Byte 

+ 1 
=0 Read/Write IER Interrupt Enable Register 

=1 Read/Write - Divisor Latch High Byte 

+ 2 
- Read IIR 

Interrupt Identification 
Register 

- Write FCR FIFO Control Register 

+ 3 - Read/Write LCR Line Control Register 

+ 4 - Read/Write MCR Modem Control Register 

+ 5 - Read LSR Line Status Register 

+ 6 - Read MSR Modem Status Register 

+ 7 - Read/Write - Scratch Register 
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DOWNLOAD THE ADCP DATA 

The data, preceded by the ID code 7F7F, contains header data. The fixed and 
variable leader data is preceded by ID codes 0000 and 8000.  
 

Table 19 PD0 standard output data buffer format 

Always Output 

Header: 6 Bytes + [2*Number of Data Types] 

Fixed Leader Data: 53 Bytes 

Variable Leader Data: 65 Bytes 

WP – Command 
WD - Command 

Velocity: 2 Bytes + 8 Bytes per Depth Cell 

Correlation Magnitude: 2 Bytes + 4 Bytes per Depth Cell 

Echo Intensity: 2 Bytes + 4 Bytes per Depth Cell 

Percent Good: 2 Bytes + 4 Bytes per Depth Cell 

BP - Command Bottom Track Data: 85 Bytes 

Always Output 
Reserved: 2 Bytes 

Checksum: 2 Bytes 

 
Knowing the necessary binary address offsets, it is possible to directly access to 

the desired data, which are pitch, roll and heading information, as well as, the four 
velocities (each beam) for each one of the 16 depth cell. 

 

 

 

 

 

 

 

 

 

 




